Journal of Analytical Methods in Chemistry
 Journal metrics
See full report
Acceptance rate19%
Submission to final decision105 days
Acceptance to publication17 days
CiteScore4.300
Journal Citation Indicator0.520
Impact Factor2.6

Detection and Characterization of the Metabolites of Ciwujianoside B in Rats Based on UPLC-Fusion Lumos Orbitrap Mass Spectrometry

Read the full article

 Journal profile

Journal of Analytical Methods in Chemistry publishes research into the methods and instrumentation used in chemical analysis, including spectroscopic, spectrometric and wet chemistry techniques, and their applications in real-world problems.

 Editor spotlight

Chief Editor, Dr. María José Trujillo-Rodríguez, is based in the Chemistry Department (Analytical Chemistry Division) at Universidad de La Laguna, Spain.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Preliminary Exploration of Potential Active Ingredients and Molecular Mechanisms of Yanggan Yishui Granules for Treating Hypertensive Nephropathy Using UPLC-Q-TOF/MS Coupled with Network Pharmacology and Molecular Docking Strategy

Hypertensive nephropathy (HN) is a prevalent complication of hypertension and stands as the second primary reason for end-stage renal disease. Research in clinical settings has revealed that Yanggan Yishui Granule (YGYSG) has significant therapeutic effects on HN. However, the material basis and action mechanisms of YGYSG against HN remain unclear. Consequently, this study utilized a comprehensive method integrating ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), network pharmacology, and molecular docking to delineate the active ingredients and potential therapeutic mechanisms of YGYSG for treating HN. Firstly, sixty distinct components were recognized in total as potential active ingredients in YGYSG by UPLC-Q-TOF/MS. Subsequently, the mechanisms of YGYSG against HN were revealed for the first time using network pharmacology. 23 ingredients played key roles in the complete network and were the key active ingredients, which could affect the renin-angiotensin system, fluid shear stress and atherosclerosis, HIF-1 signaling pathway, and AGE-RAGE signaling pathway in diabetic complications by regulating 29 key targets such as TNF, IL6, ALB, EGFR, ACE, and MMP2. YGYSG could treat HN through the suppression of inflammatory response and oxidative stress, attenuating the proliferation of renal vascular smooth muscle cells, lessening glomerular capillary systolic pressure, and ameliorating renal dysfunction and vascular damage through the aforementioned targets and pathways. Molecular docking results revealed that most key active ingredients exhibited a high affinity for binding to the key targets. This study pioneers in clarifying the bioactive compounds and molecular mechanisms of YGYSG against HN and offers scientific reference into the clinical application.

Research Article

The Molecular Mechanism of FABP4 Inhibition Effects of GAS and 4-HBA in Gastrodia elata Blume Was Discussed Based on NMR and Molecular Docking

To isolate gastrodin (GAS), 4-hydroxybenzyl alcohol (4-HBA), and phenolic compounds from Chinese medicine Gastrodia elata Blume, and to explore the binding mode of fatty acid binding protein 4 (FABP4/aP2) that is closely related to macrophage inflammation, we study their anti-inflammatory targets. After the ultrasonic extraction of the main active components with 70% ethanol, three resins and three eluents were selected, and eight phenolic monomers with similar structures, such as gastrodin and 4-hydroxybenzyl alcohol, were isolated from Gastrodia elata by AB-8 macroporous resin and silica gel column chromatography and eluted with the CHCl3-MeOH gradient. Their structures were identified by HPLC and nuclear magnetic resonance (NMR). The FABP4 protein was added to GAS and 4-HBA, and the NMR experiment was performed to observe ligand binding. Finally, according to the spectral information of STD-NMR and molecular docking technology, the interaction between ligands and protein was studied. The fluorescence competition experiment confirmed that both GAS and 4-HBA were in the binding cavity of FABP4. Moreover, 3-phenoxy-2-phenylbenzoic acid (PPA) is a possible inhibitor of FABP4, reducing macrophage-related inflammation and endoplasmic reticulum stress. This work provides a new basis for the anti-inflammatory mechanism of Gastrodia elata, paving the way for the research and development of FABP4 inhibitor drugs.

Research Article

Advanced UPLC-MS/MS Method for the Quantification of SIPI6398 in Rat Plasma and Its Pharmacokinetic Characterization

SIPI6398 is a novel anti-schizophrenia agent with a new mechanism of action and demonstrates better target selectivity and safety compared to its competitors. However, few in vivo studies on the pharmacokinetics and bioavailability of SIPI6398 have been performed. A rapid and simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach was developed for accurate quantification of SIPI6398 in rat plasma. A simple protein precipitation of acetonitrile-methanol (9 : 1, v/v) was used to treat plasma. Chromatography was performed on a UPLC HSS T3 column (50 mm × 2.1 mm, 1.8 μm) at a flow rate of 0.4 ml/min. The mobile phase consisted of acetonitrile-water (with 0.1% formic acid) and gradient elution was used, and the elution time was 4 minutes. Quantitative analysis was performed using electrospray ionization (ESI) in positive ion detection mode with multiple reaction monitoring (MRM) mode. To evaluate the pharmacokinetics and bioavailability, SIPI6398 was administered to rats in two different ways: oral (4 mg/kg) and intravenous (2 mg/kg) administration. The calibration curve for the UPLC-MS/MS approach shows excellent linearity in the range of 1–2000 ng/mL with an r value above 0.99. The precision, accuracy, recovery, matrix effect, and stability results all meet the criteria established for biological analytical methods. The UPLC-MS/MS method was successfully applied it to pharmacokinetics study of SIPI6398. The bioavailability of SIPI6398 was calculated to be 13.2%. These studies have the potential to contribute towards a more comprehensive comprehension of the pharmacokinetics and bioavailability of SIPI6398.

Research Article

Direct Extraction and Determination of Free Nicotine in Cigarette Smoke

The accurate determination of the free nicotine content in cigarette smoke is crucial for assessing cigarette quality, studying harm and addiction, and reducing tar levels. Currently, the determination of free nicotine in tobacco products primarily relies on methods such as pH calculation, nuclear magnetic resonance (NMR) spectroscopy, headspace solid-phase microextraction (HS-SPME), and traditional solvent extraction. However, these methods have limitations that restrict their widespread application. In this study, the free nicotine in cigarette smoke was directly extracted by using cyclohexane according to the traditional solvent extraction method and detected via gas chromatography-mass spectrometry. Compared with the traditional two-phase solvent extraction, our experimental method is easy to execute and eliminates the influence of aqueous solutions on the original distribution of nicotine in cigarette smoke particulate matter. Furthermore, the presence of protonated nicotine in tobacco does not affect the determination. Compared with HS-SPME and NMR spectroscopy, our approach, which involves solvent extraction followed by chromatographic separation and instrumental detection, offers simplicity, improved precision, better detection limits, and reduced interference during the instrumental detection stage. The standard addition recoveries in the conducted experiment ranged from 96.2% to 102.5%. The limit of detection was 2.8 μg/cig, and the correlation coefficient for the quadratic regression of the standard curve exceeded 0.999. The relative standard deviation for parallel samples was between 1.7% and 3.4% (n = 5), fully meeting the requirements for the determination of free nicotine in cigarette smoke. Analysis of cigarette samples from 38 commercially available brands revealed that the content of free nicotine ranged from 0.376 to 0.716 mg/cig, with an average of 0.540 mg/cig, and free nicotine accounted for 39.1%–88.8% of the total nicotine content.

Research Article

Rapid Analysis of Seven Polyamines in Nephotettix cincticeps by Using Ultra-Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry

A fast, simple, and sensitive method for the simultaneous determination of seven polyamines in Nephotettix cincticeps was developed based on ultra-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-3Q-MS) together with liquid phase extraction. Polyamines in insect samples were extracted with HClO4 solution and then were separated and detected by UPLC-3Q-MS, which was equipped with a hydrophilic interaction liquid chromatography column, within 5 min without any derivatization procedure. The method has been successfully used to detect 7 polyamines in healthy and difluormethylornithine-treated adults of Nephotettix cincticeps with a method limit of detection and the method limit of quantitation of 24–139 pg/mg and 82–464 pg/mg, respectively, an intraday and interday relative standard deviation (RSD, n = 5) of 1.97–6.00% and 2.08–5.92% respectively, and a recovery of 86–115%. The success of this study provided a reliable method for the rapid and high-throughput detection of polyamines in the insect sample.

Research Article

Development and Validation of Analytical Procedure for Elemental Impurities in Rosuvastatin Calcium Tablets by ICP-MS and Microwave Digestion

Rosuvastatin calcium is a widely used 3-hydroxy-3-methylglutaryl coenzyme A-reductase inhibitor developed for the treatment of dyslipidemia. To establish a control strategy for the elemental impurities, a new digestion method combined with an inductively coupled plasma-mass spectrometer (ICP-MS) was developed and validated by our team to determine elements Cd, Pb, As, Hg, Co, V, and Ni in rosuvastatin calcium tablets, which digest the sample perfectly even in the presence of a large number of excipients, especially titanium dioxide. The measurement mode was collision cell mode with kinetic energy discrimination (KED). 209Bi+, 115In+, and 89Y+ were chosen as internal standard elements. The recoveries of the limit of quantitation (LOQ) ranged from 90.5% to 106.4%, concentrations of the abovementioned elements in LOQ were 0.25 µg·L−1, 0.25 µg·L−1, 0.75 µg·L−1, 1.5 µg·L−1, 2.5 µg·L−1, 5 µg·L−1, and 8 µg·L−1 , respectively, linear correlation coefficients were above 0.9997, the recoveries in accuracy item ranged from 91.8% to 103.6%, and relative standard deviations (RSDs) of recovery in precision were not more than 1.8%, reflecting a reliable method of high sensitivity, strong anti-interference capacity, and good precision, and that it was suitable for the determination of elemental impurities in drugs.

Journal of Analytical Methods in Chemistry
 Journal metrics
See full report
Acceptance rate19%
Submission to final decision105 days
Acceptance to publication17 days
CiteScore4.300
Journal Citation Indicator0.520
Impact Factor2.6
 Submit Evaluate your manuscript with the free Manuscript Language Checker

We have begun to integrate the 200+ Hindawi journals into Wiley’s journal portfolio. You can find out more about how this benefits our journal communities on our FAQ.